publications

Publications in reversed chronological order. (*) denotes equal contribution.

2024

  1. NeurIPS
    Geometric Trajectory Diffusion Models
    Jiaqi Han, Minkai Xu, Aaron Lou, Haotian Ye, and Stefano Ermon
    Advances in Neural Information Processing Systems, 2024
  2. NeurIPS
    TFG: Unified Training-Free Guidance for Diffusion Models
    Haotian Ye*, Haowei Lin*, Jiaqi Han*, Minkai Xu, Sheng Liu, Yitao Liang, Jianzhu Ma, James Zou, and Stefano Ermon
    Advances in Neural Information Processing Systems, 2024
  3. NeurIPS
    RelBench: A Benchmark for Deep Learning on Relational Databases
    Joshua Robinson, Rishabh Ranjan, Weihua Hu, Kexin Huang, Jiaqi Han, Alejandro Dobles, Matthias Fey, Jan E Lenssen, Yiwen Yuan, Zecheng Zhang, Xinwei He, and Jure Leskovec
    Advances in Neural Information Processing Systems Datasets and Benchmarks Track, 2024
  4. ICML
    Equivariant Graph Neural Operator for Modeling 3D Dynamics
    Minkai Xu*, Jiaqi Han*, Aaron Lou, Jean Kossaifi, Arvind Ramanathan, Kamyar Azizzadenesheli, Jure Leskovec, Stefano Ermon, and Anima Anandkumar
    In Forty-first International Conference on Machine Learning, 2024
  5. ICML
    Improving Equivariant Graph Neural Networks on Large Geometric Graphs via Virtual Nodes Learning
    Yuelin Zhang*, Jiacheng Cen*, Jiaqi Han*, Zhiqiang Zhang, Jun Zhou, and Wenbing Huang
    In Forty-first International Conference on Machine Learning, 2024

2023

  1. NeurIPS
    Crystal structure prediction by joint equivariant diffusion
    Rui Jiao, Wenbing Huang, Peijia Lin, Jiaqi Han, Pin Chen, Yutong Lu, and Yang Liu
    Advances in Neural Information Processing Systems, 2023
  2. IEEE TNNLS
    Structure-Aware DropEdge Toward Deep Graph Convolutional Networks
    Jiaqi Han, Wenbing Huang, Yu Rong, Tingyang Xu, Fuchun Sun, and Junzhou Huang
    IEEE Transactions on Neural Networks and Learning Systems, 2023
  3. ICML
    Oral
    Subequivariant Graph Reinforcement Learning in 3D Environments
    Runfa Chen*, Jiaqi Han*, Fuchun Sun, and Wenbing Huang
    In Proceedings of the 40th International Conference on Machine Learning, 2023
    Oral Presentation [Top 2.3%]
  4. AAAI
    Energy-motivated equivariant pretraining for 3d molecular graphs
    Rui Jiao, Jiaqi Han, Wenbing Huang, Yu Rong, and Yang Liu
    In Proceedings of the AAAI Conference on Artificial Intelligence, 2023

2022

  1. EGHN.png
    Equivariant graph hierarchy-based neural networks
    Jiaqi Han, Wenbing Huang, Tingyang Xu, and Yu Rong
    Advances in Neural Information Processing Systems, 2022
  2. SGNN.gif
    Learning physical dynamics with subequivariant graph neural networks
    Jiaqi Han, Wenbing Huang, Hengbo Ma, Jiachen Li, Josh Tenenbaum, and Chuang Gan
    Advances in Neural Information Processing Systems, 2022
  3. Arxiv
    Geometrically equivariant graph neural networks: A survey
    Jiaqi Han, Yu Rong, Tingyang Xu, and Wenbing Huang
    arXiv preprint arXiv:2202.07230, 2022
  4. ICLR
    Equivariant Graph Mechanics Networks with Constraints
    Wenbing Huang*, Jiaqi Han*, Yu Rong, Tingyang Xu, Fuchun Sun, and Junzhou Huang
    In International Conference on Learning Representations, 2022
  5. Arxiv
    Smoothing matters: Momentum transformer for domain adaptive semantic segmentation
    Runfa Chen, Yu Rong, Shangmin Guo, Jiaqi Han, Fuchun Sun, Tingyang Xu, and Wenbing Huang
    arXiv preprint arXiv:2203.07988, 2022

2021

  1. KDD
    Multivariate Time Series Anomaly Detection and Interpretation Using Hierarchical Inter-Metric and Temporal Embedding
    Zhihan Li, Youjian Zhao, Jiaqi Han, Ya Su, Rui Jiao, Xidao Wen, and Dan Pei
    In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 2021